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PURPOSE

The purpose of the present investigation is to solve the
Navier-Stokes equations for unsteady airfoil flows. Two primary
types of unsteady flows are considered. The first is unsteady
periodic flow over an airfoil at a fixed angle-of-attack past
stall. The second is unsteady flow over an airfoil which is
pitching either sinusoidally or with a constant-rate pitch-up
motion. For the pitching airfoil solutions, a dynamic mesh is
employed in the computations. All results are compared with
experiment.

] NAVIER-STOKES EQUATIONS APPLIED TO UNSTEADY FLOWS
ON FIXED MESHES

o NAVIER-STOKES EQUATIONS APPLIED TO UNSTEADY FLOWS
ON DYNAMIC MESHES

o INCLUDE TIME TERMS IN FLUX VECTORS

[ SINUSOIDAL PITCH SOLUTIONS

o CONSTANT-RATE PITCH SOLUTIONS

o COMPARISON WITH EXPERIMENT
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GOVERNING EQUATIONS

The governing equations used in the present analysis are the
two-dimensional Reynolds averaged thin-layer Navier-Stokes
equations. They are written in generalized coordinates, with
the n-coordinate direction along the body and the z-coordinate
direction normal to the body. Q represents the conserved flow
variables. The fluyx vectors G and H are split according to the
method of Van Leer’', with the extension to dynamic meshes given
by Anderson et al2, J is the coordinate transformation

Jacobian. For an unmoving mesh, ne and Ct are zero.
Thin-Layer Navier-Stokes
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FLUX SPLITTING

Fluxes are split into a forward and a backward contribution
according to the signs of the eigenvalues of the Jacobian
matrices, and differenced accordingly. The split-flux
differences are implemented as a flux balance across a cell,
corresponding to MgSCL (Monotone Upstream-centered Schemes for
Conservation Laws)-® type differencing. For example, the
derivative in F at the i node in the figure can be written as
F(Q);,q,, = F(Q), _, ,, , where each F(Q) can be split into its
forwdard and backward components F and F . State variables on
each interface are obtained by interpolation of the conserved
variables at the appropriate nodes. Using upwind-biasing, for
example, conserved variables at the i-1, i, and i+1 nodes are
used to obtain the positive contribution to F(Q) at the i+1/2
interface. The Van Leer splitting has the advantage over more
conventional splittings that it is continuously differentiable,
and allows shocks to be captured with at most two interior zones.

i-1/2 i+1/2
® Split fluxes into forward and
backward contributions
FQ) = FH@™) + F@h
® Use upwind biased approximation to
spatial derivatives

® Van Leer splitting
e Continuously differentiable
e Allows shocks to be captured with at most
two (usually one) interior zones

-1 i 1+1
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NUMERICAL METHOD

An implicit, upwind-biased, finite-volume scheme is used to
numerically solve the thin-layer Navier-Stokes equations. The
system of equations is approximately factored and solved in two
sweeps. The (+) and (-) superscripts indicate positive and
negative flux split quantities. All viscous terms are centrally
differenced. The A, B, and M matrices arise from linearizations
of the G flux, H flux, and the viscous terms, respectively. The
method is second order accurate in space and first order ac¢curate
in ti%e. The algebraic eddy viscosity Baldwin-Lomax turbulence
model” is used for all turbulent flow computations. Boundary
conditions are applied explicitly.

Upwind Finite-Volume Approximate-Factorization

I -, * +a *
[ 555 * 9, A + 93, A 14AQ - -RHS
I 1 1 AQ*
-+ +_ - —_— - - n

-+ +0- -+
RHS = 3n G + 3n G + BC H + BC

— -1 -1
-Re a;[J (¢ R + cyS)J

+

n-
TURBULENCE MODEL: BALDWIN-LOMAX

BOUNDARY CONDITIONS: NO-SLIP, ADIABATIC WALL ON BODY

CHARACTERISTIC ANALYSIS IN FARFIELD



AIRFOIL GRID

This figure shows a partial view of a representative grid
used in the airfoil calculations. It is a 193 x 65 C-mesh with
clustering in the leading and trailing edge reggons. Average
minimum normal spacing on the body is 6.4 x 10 ¢c. The grid
extends 30 chords from the airfoil.

193 x 65'C-mesh
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CONSTANT ANGLE-OF-ATTACK UNSTEADY SOLUTIONS

The NACA 0012 airfoil was analyzed at a Reynolds number of
3 million and a Mach number of 0.3 at several angles-of-attack up
to and beyond stall. This figure shows computed 1lift coefficient
versus angle-of-attack, alpha, in comparison gith the experiments
of Loftin and Smith5 and Gregory and O'Reilly". At 0, 10, and 15
deg., computed values are in excellent agreement with
experimental results. At both 16 and 18 deg. angle-of-attack,
within the region where experiment indicates stall accompanied by
a sudden drop in 1lift, the computed flowfield is unsteady and
periodic with 1ift coefficients varying in the ranges indicated
in the figure. The maximum and minimum 1lift values agree well
with the correéesponding experimental values before and after
stall, respectively. The Strouhal number of the periodic flow is
given by St = ncsina/u°° s, Where n is the frequency of
oscillation, ¢ is the airfoil chord, a is the angle-of-attack,
and u is the freestream flow velocity. At 21 deg., the periodic
oscillation is no longer present. The results indicate a nearly
steady solution, with only a small non-periodic variation in 1lift
coefficient about an average value of about 1.05.

NACA 0012 airfoil, Re = 3 million
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STEADY VORTICITY CONTOURS

Computed vorticity contours are shown for the NACA 0012
airfoil at 15 and 21 deg. angle-of-attack. At 15 deg., prior to
stall onset, the vorticity is concentrated in a relatively thin-
layer near the airfoil surface and behind the trailing edge. At
21 deg. the airfoil shows a region of massive separation above
the airfoil upper surface. Vorticity levels are much higher than
the 15 deg. case, with the strongest clockwise vorticity
concentrated near the leading edge on the upper surface and the
strongest counterclockwise vorticity again behind the trailing
edge.

NACA 0012 airfoil, Re

= 3 million
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UNSTEADY VORTICITY CONTOURS

At 16 deg. angle-of-attack, the flowfield oscillates in a
periodic manner, with the 1lift varying between a minimum of 0.89
and a maximum of 1.60. Vorticity contours are shown at four
points in the unsteady periodic cycle. The cyclic nature of the
flowfield is characterized by the shedding of a leading edge
vortex near maximum l1ift.

NACA 0012 airfoil, Re = 3 millifon, a = 16°

c, = 1.60 max lift
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FORCED PITCHING SOLUTIONS

Computations have been performed in which the airfoil
undergoes a forced pitching motion about its quarter chord. Two
types of motion have been explored and results compared with
experiment. The first is a sinusoidal pitching motion at high
Reynolds number (turbulent flow) and the second is a constant-
rate pitch from 0 to 60 deg. angle-of-attack at Re = 45,000
(laminar flow).

a(T) ag * a1sin(Mmk1) sinusoidal pitch

a(1) = ag + MKkt constant-rate pitch

= reduced frequency = wc/u_
= frequency (rad/sec)

chord
= freestream velocity
= time, nondimensionalized by c/a_
= freestream speed of sound

MACOE X
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SINUSOIDAL PITCH SOLUTION WITH NO STALL

The NACA 0012 airfoil was analyzed at Re = 3.89 x 106,

M = 0.301, a, = T7.97 deg., a, = 4.91 deg., and a reduced
frequency k = 0.398., This corresponds with Case 7111 from
McCroskey et al’., Transition to turbulence is fixed at the

leading edge in the computations but was not fixed in the
experiment. The time step taken for the computations is 0.05.
This figure shows the 1lift and moment coefficients as a function
of angle-of-attack. The thin-layer Navier-Stokes code predicts a
shallower 1lift versus alpha slope, slightly overpredicting the
minimum 1ift and underpredicting the maximum 1ift. Lift values
for increasing alpha are on the upper half of the 1lift curve for
both theory and experiment. The moment coefficient is in good
agreement with experiment when angle-of-attack is increasing
(lower half of the curve), but underpredicts the moment when
angle-of-attack is decreasing.

NACA 0012 airfoil, Re = 3.89 x 109,
M = 0.301, ay = 7.97°, a, = 4.91°, k = 0.398
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PRESSURE COEFFICIENTS

Pressure coefficients are compared with experiment at six
times in the pitching cycle for Case T7111. Overall, the present
method does well in predicting the shapes of the pressure curves.

NACA 0012 airfoil, Re = 3.89 x 106,
M = 0.301, ag = 7.97°, a, = 4.91°, k = 0.398
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SINUSOIDAL PITCH SOLUTION WITH DEEP STALL

A solution with deep stall was computed at Re = 3.76 x 106,
M = 0.292, a, = 14.84 deg., a, = 9.88 deg., k = 0.202. These
conditions cOrrespond with Case 14210 from McCroskey et al’, In
this case, both theory and experiment fixed transition to
turbulence at the leading edge. Time step for the computations
is 0.05. As seen from plots of 1lift and moment coefficient
versus angle-of-attack, the computations agree well with
experiment only as the angle-of-attack is increasing (upper
portion of the 1lift curve, lower portion of the moment curve).
However, theory predicts stall later than experiment. At all
other points in the pitching cycle, theory and experiment are
only qualitatively similar. Theory shows oscillations, which
are not present in the experiment, in the 1ift and moment curves
as the angle-of-attack decreases.

NACA 0012 airfoil, Re = 3.76 x 109,
M = 0.292, Cxo = 14,.84°, u1 = 9.88°, k = 0.202

Thin-layer N-S Thin-layer N-S
o Experiment I o Experiment
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aipha, deg alpha, deg
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AGARD CASE SINUSOIDAL PITCH SOLUTIONS

Computations were performed to compare with two unsteady
solutions from Landon-. Thg first, corresponding with AGARD
Case 2, is at Re = 4.8 x 10°, M = 0.6, a, = 3.16 deg.,
a, = 4,59 deg., k = 0.%622. The second c¢orresponds with AGARD
Case 3: Re = 4.8 x 10°, M = 0.6, a, = 4.86 deg., @, = 2.4Y4 deg.,
kK = 0.1620. Lift and moment coefficCients for each case are shown
in the figure. In both cases, for theory and experiment, the
1ift values for increasing alpha are on the lower portion of the

curve. The computations do fairly well to predict 1ift at the
lower angles-of-attack but underpredict the 1lift at the high end.
of the cycles. Moment coefficients are underpredicted everywhere

in the cycles, although for alpha increasing (lower portion of
the curve) results are in closer agreement than for alpha
decreasing. Results for Case 3 are very similar to those
obtained by Howlett”’ using a small-disturbance potential code
coupled with an inverse boundary-layer method. Howlett found
that results near maximum lift are highly sensitive to the
transition location. His results shown here have transition set
at 20%. The thin-layer Navier-Stokes computations set transition
at the leading edge, while experimental transition is
unspecified.

AGARD Case 2 AGARD Case 3

NACA 0012 airfoil, Re = 4.8 x 105, M - 0.6
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cycles lead or

FORCE COMPONENTS AND PHASE LAG

The real and imaginary components of 1ift and drag were
computed for AGARD Cases 2 and 3 and compared with experiment.
Agreement is fair, with the largest discrepancies in the
imaginary component of moment for both cases. The
values a, and

o« are the phase angles by which 1ift and moment
Tag the angle-of-attack cycle.

t
2 2 .
°soR " @ (t, - t;) It1 [eg (1) - cgayglsin(Mkt) dr
t
2 2
Cho1 = a s = Ju. [og(D) Cypaygicos(Mkt) dr
1 2 1) 1
and similar expressions for CnaR and Chal
AGARD Case 2 AGARD Case 3
Exp Theory Error Exp Theory Error
. 6.616 5.67 14.3% 6.372 5.56 12.7%
°zu1 -0.891 -0.88 1.2% -0.803 -0.75 6.6%
c “R 0.224 0.172 23.2% 0.303 0.258 14.9%
e"’“I -0.244  -0.165 32.4% -0.287 -0.200 30.39%
af“ ~T.7° -8.8° 14.3% -7.2° -7.7° 6.9%
ar -47.4°  -43,6° 8.0% -43.4°  -37,8° 12.9%
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CONSTANT-RATE PITCH SOLUTIONS, w = 460 DEG/SEC

At a Reynolds number of 45,000, laminar flow computations of

an NACA 0015 airfoil pitched up at a constant rate of 460 deg./sec

(k = 0.2007) are180mpared with smoke wire flow visualizations of
Helin and Walker'“, Three angles-of-attack are shown in the
figure. Flow is from right to left. With a time step of 0.05,
computed velocity vectors show the same general trend as
experiment, although the center of the shed leading-edge vortex
does not convect downstream as quickly in the computations as it
does in the experiment. At both 45 and 60 deg., there is
reversed flow over most of the airfoil upper surface, due to the
shed vortex.

NACA 0015 airfoil, Re = 45,000, laminar flow
w = 460 deg./sec

COMPUTATION EXPERIMENT

a = 30°

a = 45°

a = 60°

391



392

At a
time step
agreement
than that

CONSTANT-RATE PITCH SOLUTIONS, w = 1380 DEG/SEC

higher rate of pitch (k = 0.6021), computation with a
of 0.02 shows a leading-edge vortex growth rate in good
with experiment. This vortex is much smaller in size
for the lower pitch rate of 460 deg./sec. However, the

computational analysis does not show the second region of

separated

flow near the trailing edge that is seen in the flow

visualizations.

NACA 0015 airfoil, Re = 45,000, laminar flow

w = 1380 deg./sec

COMPUTATION EXPERIMENT

a = 30°

a = U5°

a = 60°

ey
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CONCLUSIONS

A finite volume implicit approximate factorization method
which solves the thin-layer Navier-Stokes equations has been used
to predict unsteady turbulent-flow airfoil behavior. At a
constant angle-of-attack of 16 deg., the NACA 0012 airfoil
exhibits an unsteady periodic¢ flowfield with the 1ift coefficient
oscillating between 0.89 and 1.60. The Strouhal number is
0.028. Results are similar at 18 deg., with a Strouhal number of
0.033. A leading-edge vortex is shed periodically near maximum
lift.

Dynamic mesh solutions for unstalled airfoil flows show
general agreement with experimental pressure coefficients.
However, moment coefficients and the maximum 1ift value are
underpredicted. The deep stall case shows some agreement with
experiment for increasing angle-of-attack, but is only
qualitatively comparable past stall and for decreasing angle-of-
attack. Laminar-flow computations of a constant-rate pitch-up
NACA 0015 airfoil show that increasing pitch rate slows
separation. Computed velocity vectors agree qualitatively with
experimental flow visualizations.

L CONSTANT ANGLE-OF-ATTACK
0 NACA 0012 FLOWFIELD UNSTEADY AT o = 16
AND 18 DEG. )
] 1lift oscillates within range of
experiment
0 St = 0.03
L PERIODICALLY SHED LEADING-EDGE VORTEX
L SINUSOIDAL PITCH
] UNSTALLED CASES

[ ] pressure coefficients agree in
general with experiment

¢ moment coefficients and maximum
1ift underpredicted

0 DEEP STALL AGREES ONLY FOR a INCREASING
L CONSTANT-RATE PITCH
0. INCREASING PITCH RATE LESSENS SEPARATION

L QUALITATIVE AGREEMENT WITH EXPERIMENT
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